Latent Class Measurement Model

• LCA model with r observed binary items, u, has a categorical latent variable c with K classes (c = k; k = 1, 2, ..., K). The marginal item probability for item an $u_i = 1$,

$$P(u_j = 1) = \sum_{k=1}^{K} P(c = k) P(u_j = 1 | c = k)$$

LCA: Two sets of parameters

$$P(u_j = 1) = \sum_{k=1}^{K} P(c = k) P(u_j = 1 | c = k)$$

STRUCTURAL: Population proportion of each class.

This is the relative class size: How big each class is. E.g., class 1 is 45% of the population

MEASUREMENT: Conditional item probabilities

These are the parameters that define classes. Think of these like the factor loading, as they are how the items relate to the latent variable

Latent Class Measurement Model

Assuming conditional independence, the joint probability of all the r
observed items is

$$P(u_1, u_2, ..., u_r) = \sum_{k=1}^{K} P(c = k) P(u_1 | c = k) P(u_2 | c = k) P(u_r | c = k)$$

This is the *default* in Mplus! What does this assumption mean? Is it necessary for the model to be identified? When, if ever, would we relax this assumption?